Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lai-Jin Tian,* Hai-Xia Yu, Yu-Xi Sun and Feng-Yang Yu

Department of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.076$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Tricyclohexyl(4-nitrophenoxyacetato)tin(IV)

The coordination geometry about the Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{5}\right)\right]$, is best described as highly distorted tetrahedral. There is an intermolecular interaction, 2.769 (2) \AA, between the Sn atom and the carbonyl O atom of the carboxylate group of an adjacent molecule.

Comment

Tricyclohexyltin carboxylates, $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}\right)$, generally have a tetrahedral structure and do not auto-associate into chain structures via carboxylate bridging, due to the effects of the three bulky organic groups at Sn (Chandrasekhar et al., 2002; Tiekink, 1991, 1994). 4-Nitrophenoxyacetic acid, whose crystal structure has been reported previously (Kumar \& Rao, 1980), is a pesticide intermediate used in the synthesis of fungicides and plant-growth regulators (Xue \& Zou, 1999). We present here the crystal structure analysis of its tricyclohexyltin ester, (I).

(I)

In (I), the Sn atom is best described as having a highly distorted tetrahedral geometry, the range of angles subtended at Sn being 89.83 (9)-124.93 (11) ${ }^{\circ}$ (Fig. 1, Table 1). An $\mathrm{Sn} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ intermolecular contact of 2.769 (2) \AA [symmetry code: (i) $\left.-x+2, y+\frac{1}{2},-z+\frac{1}{2}\right]$ is not considered to be a significant bonding interaction (Willem et al., 1998). If the $\mathrm{Sn} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ interaction were considered as a significant bonding interaction, then (I) would be described as a five-coordinate complex with the Sn atom having a trans- $R_{3} \mathrm{SnO}_{2}$ trigonalbipyramidal geometry. In that case, atoms C9, C15 and C21 would define the trigonal plane and a one-dimensional polymer would be formed through the apical positions occupied by O 1 and O 2 (Fig. 2). However, in this description, the Sn atom would lie 0.238 (2) \AA out of the trigonal plane.

Atom $\mathrm{O} 2^{\mathrm{i}}$ exerts a steric influence on atom Sn 1 from the opposite side of atom O 1 , and thus contributes to the distor-

Received 28 October 2005
Accepted 28 November 2005
Online 7 December 2005

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2
The crystal packing of (I), viewed along the a axis. Dashed lines indicate $\mathrm{Sn} \cdots \mathrm{O}$ interactions. H atoms have been omitted.
tion of the tetrahedral geometry around the Sn atom, by opening up the $\mathrm{C}-\mathrm{Sn} 1-\mathrm{C}$ angles and contracting the $\mathrm{O} 1-$ $\mathrm{Sn} 1-\mathrm{C}$ angles. The $\mathrm{Sn} 1 \cdots \mathrm{O} 2$ separation of 3.523 (3) \AA, and the $\mathrm{Sn} 1-\mathrm{O} 1$ distance of 2.1317 (19) Å, are longer than those found in previously reported tricyclohexyltin carboxylates, such as tricyclohexyltin indole-3-acetate (Molloy et al., 1986), trifluoroacetate (Calogero et al., 1980), N-phthaloylglycinate (Ng \& Kumar Das, 1997a), (N, N-diethylthiocarbamoylthio)acetate (Ng \& Kumar Das, 1997b), 2-[2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (Willem et al., 1998), 2-(4-chlorophenyl)-3-methylbutyrate (Song et al., 2003) and 4biphenylacetate (Tian et al., 2005). However, the three Sn - C distances in (I) are similar to those of the carboxylate structures mentioned above (Table 1).

Experimental

Tricyclohexyltin hydroxide ($0.577 \mathrm{~g}, 1.5 \mathrm{mmol}$) and 4-nitrophenoxyacetic acid $(0.30 \mathrm{~g}, 1.5 \mathrm{mmol})$ in toluene $(60 \mathrm{ml})$ were refluxed for 4 h
with azeotropic removal of water via a Dean-Stark trap. The resulting clear solution was evaporated to dryness under a vacuum. The pale-yellow solid obtained, (I), was recrystallized from ethanol and crystals of (I) were obtained from hexane-chloroform (1:1) by slow evaporation at 298 K (yield 70.3\%; m.p. 358-359 K). Analysis, found: C 55.22 , H 6.69 , N 2.37%; calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Sn}$: C 55.34, H 6.97, N 2.48\%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{5}\right)\right]$
$M_{r}=564.27$
Monoclinic, $P 2_{1} / c$
$a=10.8892$ (15) A
$b=11.7837$ (16) \AA
$c=20.768$ (3) A
$\beta=101.456$ (2) ${ }^{\circ}$
$V=2611.8(6) \AA^{3}$
$Z=4$

$$
D_{x}=1.435 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5699 reflections
$\theta=2.5-27.6^{\circ}$
$\mu=1.01 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pale yellow
$0.22 \times 0.09 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.808, T_{\text {max }}=0.914$
20503 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.076$
$S=1.02$
5390 reflections
298 parameters
H -atom parameters constrained

5390 independent reflections 4395 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-26 \rightarrow 25$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.037 P)^{2}\right. \\
& +0.0495 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e}^{\text {max }}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Sn1-O1	$2.1317(19)$	$\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.769(2)$
$\mathrm{Sn} 1-\mathrm{C} 21$	$2.144(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.274(3)$
$\mathrm{Sn} 1-\mathrm{C} 9$	$2.152(3)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.217(3)$
$\mathrm{Sn} 1-\mathrm{C} 15$	$2.155(3)$		
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 21$	$89.83(9)$	$\mathrm{C} 9-\mathrm{Sn} 1-\mathrm{C} 15$	$124.93(11)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 9$	$99.86(9)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$170.61(11)$
$\mathrm{C} 21-\mathrm{Sn} 1-\mathrm{C} 9$	$116.16(10)$	$\mathrm{C} 21-\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$81.49(9)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{C} 15$	$98.68(9)$	$\mathrm{C} 9-\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.27(9)$
$\mathrm{C} 21-\mathrm{Sn} 1-\mathrm{C} 15$	$115.26(11)$	$\mathrm{C} 15-\mathrm{Sn} 1-\mathrm{O} 2^{\mathrm{i}}$	$81.95(9)$

Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms were placed in calculated positions and refined in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier C$)$. Constrained $\mathrm{C}-\mathrm{H}$ distances were 0.93 for aromatic $\mathrm{CH}, 0.97$ for methylene CH_{2} and $0.98 \AA$ for methine CH .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

metal-organic papers

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Calogero, S., Ganis, P., Peruzzo, V. \& Tagliavini, G. (1980). J. Organomet. Chem. 191, 381-390.
Chandrasekhar, V., Nagendran, S. \& Baskar, V. (2002). Coord. Chem. Rev. 235, 1-52.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kumar, S. V. \& Rao, L. M. (1980). Acta Cryst. B36, 1218-1220.
Molloy, K. C., Purcell, T. G., Hahn, E., Schumann H. \& Zuckermann, J. J. (1986). Organometallics, 5, 85-89.

Ng, S. W. \& Kumar Das, V. G. (1997a). Acta Cryst. C53, 546-548.
Ng, S. W. \& Kumar Das, V. G. (1997b). Acta Cryst. C53, 548-549.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Song, X., Cahill, C. \& Eng, G. (2003). Appl. Organomet. Chem. 17, 743744.

Tian, L.-J., Sun, Y.-X, Gao, Y.-Z. \& Yang, G.-M. (2005). Acta Cryst. E61, m1199-m1200.
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.
Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. \& Tiekink, E. R. T. (1998). Organometallics, 17, 5758-5766.

Xue, S. \& Zou, J. (1999). Chin. J. Pestic. Sci. 1, 85-87.

